K Thayalan PhD
Professor and Head
Radiological Physics Department
Barnard Institute of Radiology and Oncology
Government General Hospital and
Madras Medical College
Chennai, India
Dedicated to

My Parents (Late)
Thiru K Kuppusamy Jayamkondar
Thirumathi K Arukkani
It brings me immense pleasure to write the foreword for this book which is focusing on radiation protection. There was a long-felt necessity for such a textbook. Dr Thalayan has an extensive experience in the field of Medical Physics and this book sums up his vast experience for the benefit of the readers. The author must be complemented for the lucid style of writing. It contains all the essential aspects of radiological safety. The chapter on "Regulations and Dose Limits" is of particular relevance as it contains details of regulatory aspects. The book will go a long way in helping the Radiation Oncology, Nuclear Medicine, Radiology and Medical Physics Community and will be very useful for the health care providers at all levels in these specialties. The chapters are concise and complete in all aspects. Large numbers of illustrations have been included to explain the subject matter. Bibliographies at the end of each chapter have been included to serve as additional reading material on the subject.

I wish Dr Thalayan all success in his maiden venture.

Prof GK Rath MD
Professor and Head,
Department of Radiation Oncology
Chief, DRBRAIRCH, AIIMS
Ex President, AROI
Preface

It gives me immense pleasure to come out with a textbook on radiological safety, a unique textbook. It is my long-felt dream to have a complete book, on radiological safety, covering the entire fields of radiology i.e., diagnostic radiology, nuclear medicine and radiotherapy.

Radiation is analogous to fire which has both beneficial and harmful effects. The inherent philosophy is to minimize the hazards and maximize the benefits in order to bring down radiation doses within the regulatory control limits by which we can ensure the safety of the occupational workers as well as the patient and public. Hence, it is important that every one should be aware of the safety concepts, dose limits, regulation, waste disposal, etc., to establish a safe work culture while handling radiation sources in the hospital. As such, no single document is available for the above purposes, and the information is collected from safety codes and guides of international and national agencies like IAEA, NCRP and AERB.

An attempt has been made to bring all the relevant information including safety terminology, biological effects, exposure control, monitoring, planning of the installation, quality assurance, regulation, personnel safety, transport, waste disposal and radiation emergency, etc. in the form of a book. The whole objective is to remove misconception about radiation and prepare the minds of younger generation to face the future challenge confidently. This book is intended for postgraduates of medical physics, diagnostic radiology, nuclear medicine and radiotherapy. This book may also find a place for the preparation of RSO examinations for medical physicists.

Moreover, an attempt has been made to bring quantitative data from international reports and recommendations, wherever necessary, with practical examples and illustrations. This may enable the new entrants to plan a radiation facility, carry out quality assurance and radiation survey without much cumbersome and perform the day-to-day medical physicist’s job with ease and involvement. Large numbers of tables and figures are incorporated wherever necessary for better understanding of the reader.

I am very much thankful to my family members for their support and cooperation. I also acknowledge the assistance offered by the Dr Kamakshi Memorial Hospital staff, especially the medical physics colleagues, in the preparation of the text. I also thank Mrs G Shakunthala for neatly typing the manuscript.

I also acknowledge my teachers, by whom I got inspiration and passion towards teaching.

I invite the readers to offer constructive comments for the future improvement of the book.

K Thayalan
Contents

1. Safety Concepts .. 1
 Introduction 1
 Radiation units 2
 Equivalent dose 4
 Effective dose or effective dose equivalent 4
 Committed dose 6
 Collective dose 6
 Genetically significant dose 7
 Detriment 8
 Annual limit on intake 8
 ALARA 8
 Sources of radiation 9

2. Biological Effects of Radiation .. 14
 Cell 14
 Interaction of radiation with tissue 14
 Linear energy transfer 16
 Biologic effects 17
 Radiation effects on DNA 22
 Radiation effects in utero 23
 Radiation risk 24
 Ten day rule and its present status 29

3. Radiation Exposure Control .. 31
 Time 31
 Distance 32
 Shielding 34
 Half value layer 35
 Sources of exposure 37
 Leakage limits 39
 Protective barrier design 40
 Facility design for diagnostic X-rays 42
 Facility design for nuclear medicine 47
 Facility design for radiotherapy 48

4. Planning of Radiological Facility ... 64
 General guidelines 64
 Establishing a diagnostic X-ray facility 65
 General radiography installation 68
 Fluoroscopy installation 68
 Mammography installation 69
 Computed tomography installation 70
 Establishing a nuclear medicine facility 71
 In-vivo diagnostic facility 74
 In-vitro and radioimmunoassay (RIA) 75
Textbook of Radiological Safety

Radionuclide therapy 78
Establishing a radiotherapy facility 79
Brachytherapy facility design 91

5. Radiation Monitoring
Personnel monitoring 95
Film badge 96
Thermoluminescent dosimeter 97
Pocket dosimeter 100
Personnel monitoring systems and features 102
Area monitoring 103
Radiation survey in diagnostic radiology 107
Radiation survey in nuclear medicine 111
Radiation survey in radiotherapy 112
Calibration and maintenance of radiation monitoring instruments 117

6. Quality Assurance
Introduction 119
Quality assurance for diagnostic radiology 119
Quality assurance for radiography unit 120
QA for mammography X-ray unit 133
QA for fluoroscopy X-ray unit 134
Quality assurance for computed tomography 134
Quality assurance for nuclear medicine 137
QA for gamma camera 138
QA for single photon emission computed tomography (SPECT) 140
Quality assurance for PET-CT 141
Image quality tests 146
QA for radiopharmaceuticals 147
Quality assurance for radiotherapy 154
QA for linear accelerator 154
QA for HDR brachytherapy 159

7. Regulations and Dose Limits
Atomic energy act-1962 167
Atomic energy regulatory board 167
Radiation protection rules-2004 168
Regulatory controls for diagnostic X-ray equipment and installations 181
Regulatory controls for nuclear medicine facilities 184
Regulatory control for radiotherapy equipment and installations 190

8. Personnel Protection
Radiography 204
Protection in fluoroscopy 212
Protection in computed tomography 214
Protection in pediatric imaging 215
Pregnancy and radiation 221
Protection in nuclear imaging 227
Protection in radionuclide therapy 232
Pregnancy and radiation protection in nuclear medicine 233