Practical Manual of Experimental and Clinical Pharmacology
Dedicated to
My parents, wife (Dr Sujata Upadhyay), son (Debayan Medhi) and all my students for their constant encouragement during my teaching career

Bikash Medhi

Dedicated to
Mentor “Dr Bikash Medhi” who always encouraged and motivated me to do well
My grandma and parents for their emotional caring support and entire family for their constant support whenever I needed
To all “True Friends” who are always with me and encouraged me to excel in life

Ajay Prakash
The purpose of the present book is to provide fundamental knowledge of practical aspects of the subject ranging from laboratory animals to clinical aspects and practical implications of various important recent advances. Learning pharmacology without animal experiment is not practically suitable though various computer assistance learning models are available for teaching experimental pharmacology as an integral part. The postgraduates perform animal experiments to learn and conduct research studies, finally to establish scientific facts and to make their career in the research field. Fundamental principles of pharmacology deal with essential points of pharmacology, animal experimentation methodology, and interpretation of results. Most important is to impart skill to budding pharmacologists, which is an essential area of teaching. In this book, reader could find some of the useful aspects, e.g. number of worked out examples which will help to translate theory into practice. Authors made a sincere attempt to include as much relevant information as possible with illustrated points and suitable examples to make this book comprehensive. Topics covered in this book have been carefully selected based on most of the recent improvised problems as per curriculum designed for pharmacology. We are hopeful that the present book will be helpful for all the postgraduates related to pharmacology, trainees, research workers during their day-to-day activities including allied health discipline and scientists in industrial drug discovery set-up and CRO. Several simple and newer experimental models have been incorporated which will help the students to engage in drug discovery in future. Besides this, several important points have been discussed in this book, e.g. ethics of animal experimentation, care of animals, preparation of solutions. Established technologies have been used in different experiments including cell culture in drug discovery. Clinical pharmacology and pharmacokinetics are special features of this book. Several clinical pharmacology topics including pharmacokinetics related to various aspects have been incorporated systematically which will provide exposure to pharmacology residents.

Lastly suggestions and criticism are most welcome.

Bikash Medhi
Ajay Prakash
We would like to thank: Dr Monika Singla and Dr Sathish Kumar V (Department of Neurology), Dr Bikash Naredi (Pediatric Surgery), Dr Basanta Hazarika (Department of Pulmonary Medicine), Dr Pranab Bhattacharyya (Department of Cardiology), Dr Ajay Meena and Dr Neeraj (Department of General Surgery), Mr Subodh Kumar (Department of Biophysics), Dr YS Bansal and Mr Sunil Dutt Attrey (Department of Forensic Medicine), Dr Deonis Xess (Apollo Hospital), Mr Devinder Toor (School of Public Health), Dr Prasad Byrav DS, Dr Harjot Kaur and Ms Sazal Patyar (Department of Pharmacology), Postgraduate Institute of Medical Education and Research, Chandigarh for their help in scrutinizing the book. We wish to thank and express gratitude for those books and bibliography, we have consulted for preparing the manuscript of this book. We would like to thank Mr Tarun Duneja (Director–Publishing) of Jaypee Brothers Medical Publishers (P) Ltd for his continuous support and excellent coordination and also to staff of Jaypee Brothers for their hard work and efforts in handling the manuscript with accurate professional skills.
PART 2: EXPERIMENTAL (IN VITRO STUDIES: ISOLATED TISSUE PREPARATION)

12. General Considerations and Collection of the Tissue/Muscle .. 137
13. Identification and Collection of Tissue/Muscle .. 140
14. Principle of Muscle Contraction .. 150
15. Fast Contracting Smooth Muscle Preparation ... 152
 A. To determine unknown concentration of histamine by using guinea pig ileum 152
 B. To determine unknown concentration of acetylcholine (ACh) using rat ascending/descending colon ... 154
 C. To determine unknown concentration of acetylcholine (ACh) using rat uterus 155
 D. To determine unknown concentration of adrenaline using guinea pig atria 157
 E. To determine unknown concentration of acetylcholine (ACh) using rat anococcygeus muscle preparation .. 159
 F. To determine unknown concentration of acetylcholine (ACh) using rat vas deferens ... 160
 G. To determine unknown concentration of antagonist (atropine) using acetylcholine (ACh) as an agonist employing guinea pig ileum preparation by pA2 method 161
16. Slow Contracting Muscle .. 164
 A. To determine unknown concentration of serotonin (5-HT) using rat stomach (fundus) ... 164
 B. To determine unknown concentration of acetylcholine (ACh) using frog rectus abdominis muscle ... 166
 C. To determine unknown concentration of acetylcholine (ACh) using guinea pig trachea ... 167
 D. To determine unknown concentration of acetylcholine (ACh) using rat phrenic nerve diaphragm ... 169
 E. To determine neuromuscular blocking drugs using innervated biventer cervicis preparation of the chick .. 171
17. Cardiac Muscle Preparation ... 173
 A. To observe the effect of various drugs on the isolated heart (Langendorff’s preparation) ... 173
 B. To determine the effect of different drugs on the normal and hypodynamic rabbit heart ... 176
 C. To demonstrate the effect of the inotropic and chronotropic effects of various drugs on frog heart normal/hypodynamic) ... 177
 i. Isolated preparation ... 177
 ii. In situ preparation ... 177
PART 3: EXPERIMENTAL (IN VIVO STUDIES)

18. Animal Experiment on Central Nervous System (CNS) .. 183
 A. To demonstrate the effect of pentobarbital on righting reflex (Hypnosis) in mouse 183
 B. To demonstrate muscle relaxant property of diazepam in mouse using rotarod apparatus .. 184
 C. To demonstrate muscle relaxant property of diazepam in mouse using chimney test .. 186
 D. To demonstrate anti-anxiety effect of diazepam in rat using elevated plus maze apparatus .. 187
 E. To demonstrate amnesic effect of diazepam in rat using Morris water maze apparatus .. 190
 F. To demonstrate the anticonvulsant property of diazepam against pentylenetetrazole (PTZ) induced convulsions in mice .. 191
 G. To demonstrate the anticonvulsant property of diazepam against pentylenetetrazole (PTZ) induced kindling in rats ... 194
 H. To demonstrate the anti-convulsant activity of phenoxytol against maximal electroshock (MES) induced convulsions in rats ... 195
 I. To demonstrate effect of phenoxythiazine (haloperidol) induced catatonia in rat 197
 J. To demonstrate the Straub tail reaction/phenomenon induced by morphine 199
 K. To demonstrate the anti-convulsant property of diazepam against pentylenetetrazole (PTZ) induced convulsions in mice .. 191
 L. To demonstrate partial global cerebral ischemia in mice .. 203

19. Animal Experiment on Cardiovascular System ... 207
 A. To record blood pressure (BP) in rodents (Rat BP). .. 207
 B. To record ECG in rodents (rat and mouse) .. 211
 C. To demonstrate isoproterenol induced myocardial infarction in rats 213
 D. To demonstrate deoxyxorticosterone acetate (DOCA) salt induced hypertension in rats ... 214
 E. To demonstrate Ferric Chloride (FeCl₃) induced thrombosis in rat model 216

20. Animal Experiment on Gastrointestinal Tract (GIT) .. 217
 A. To demonstrate gastric ulcer induction/formation by different methods 217
 B. To demonstrate cerulein induced acute pancreatitis in rat ... 219
 C. To demonstrate Tri Nitro Benzene Sulphonic acid (TNBS) induced colitis in rat 220

21. Animal Experiment on Respiratory System ... 222
 A. To measure respiratory volume in guinea pig using body plethysmograph 222
 B. To collect the Broncho Alveolar Lavage (BAL) fluid for analysis 223

22. Anti-inflammatory .. 224
 A. To demonstrate the anti-inflammatory property of indomethacin against carrageenan induced paw edema .. 224
 B. To demonstrate analgesic effect of morphine against acetic acid induced writhing in rat ... 225

23. Local Anesthetics (LA) ... 228
 A. To demonstrate the effect of any given local anesthetic (LA) using guinea pig (GP) ... 228
 B. To demonstrate the effect of the local anesthetic property of procaine HCl using foot withdrawal reflex of frog. .. 229
Practical Manual of Experimental and Clinical Pharmacology

24. Experiment on Rabbit Eye ... 230
 A. To study the effect of different drugs on the rabbit eye 230

25. Experimental Pharmacokinetics .. 233
 A. To study the pharmacokinetics of phenytoin following oral single dose administration for 7 days ... 233
 B. To study the pharmacokinetic interaction of phenytoin with etoricoxib after single oral dose for 7 days .. 234

PART 4: CLINICAL EXPERIMENTS

26. Cardiovascular System (CVS) .. 239
 Blood pressure measurement and validation of sphygmomanometer
 A. Introduction ... 239
 B. Chronobiology of blood pressure ... 241
 C. To prepare standard operating procedure (SOP) for blood pressure measurement ... 241
 D. Regulation of blood pressure .. 243
 E. Exercise and blood pressure (BP) .. 245
 F. Blood pressure guidelines .. 247
 CVS Exp. 1. To measure blood pressure in healthy volunteers 250
 CVS Exp. 2. To evaluate chronobiology of blood pressure in healthy volunteers ... 252
 CVS Exp. 3. To evaluate the effect of body posture and arm position on arterial blood pressure and heart rate 254
 CVS Exp. 4. To evaluate the effect of propranolol on blood pressure, heart rate and cardiac workload following different submaximal exercises (Tread mill test [TMT], Master’s 2 step test, Bicycle ergometer and Hand Dynamometer) in healthy volunteers ... 256
 A. Treadmill test [TMT] ... 257
 B. Master’s 2 step test ... 258
 C. Bicycle ergometer ... 258
 D. Hand dynamometer ... 259
 CVS Exp. 5. To evaluate the effect propranolol on mental stress induced rise in blood pressure and heart rate in healthy volunteer ... 261
 CVS Exp. 6. To evaluate the postural hypotension in the 60-year old male volunteers ... 263
 CVS Exp. 7. A. To evaluate the effect of glyceryl trinitrate (GTN) on blood pressure, heart rate in healthy volunteers ... 264
 B. To evaluate the effect of glyceryl trinitrate (GTN) transdermal patches on blood pressure, heart rate arterial vasodilatation in healthy volunteers ... 266
 C. Recording of an electrocardiogram (ECG) 269
 Practical Exercise for Cardiovascular System .. 275

27. Respiratory System ... 280
 RESP. Exp. 9. To compare the effect of salbutamol with placebo on peak expiratory flow rate (PEFR) in healthy volunteers 280
 RESP. Exp. 10. To evaluate the effect of salbutamol inhalation in pulmonary function test in healthy male volunteers 283
 RESP. Exp. 11. To evaluate pulmonary function test following Stair climbing exercise tolerance test ... 285
 Exercise .. 288
28. Central Nervous System (CNS) ... 291
 CNS Exp. 12. To demonstrate the effect of various drugs on psychomotor function of
 healthy volunteers ... 291
 Exercise ... 297
29. Kidney .. 303
 Kid Exp. 13. To evaluate the effect of frusemide on urine volume and Na⁺ and K⁺ excretion
 in healthy volunteers .. 303
 Kid Exp. 14. To evaluate saluretic, natriuretic and carbonic anhydrase inhibitory effect of
 various diuretics in healthy volunteers 305
 Exercise ... 307
30. Ophthalmology ... 309
 Ophtha Exp. 15. To evaluate the effect of the hyoscine on pupillary diameter,
 salivary secretion and heart rate ... 309
 Ophtha Exp. 16. To evaluate the effect of Tropicamide (1%) on pupillary
 diameter and accommodation reflex ... 312
 Ophtha Exp. 17. To evaluate the effect of topical pilocarpine (2%) on pupillary
 diameter in healthy volunteers .. 314
 Ophtha Exp. 18. To demonstrate water induced ocular hypertension in
 healthy volunteers .. 316
31. Clinical Pharmacokinetics ... 319
 Exp. 19. To study the pharmacokinetics of Aceclofenac tablet following
 single oral dose ... 319
32. Miscellaneous Practicals ... 322
 Exp. 20. To evaluate the analgesic activity of NSAIDs on different human pain models ... 322
 A. Cold water stress .. 323
 B. Radiant heat ... 323
 C. BP cuff inflation .. 324
 D. Hand dynamometer ... 324
 Exp. 21. To evaluate plasma salicylate level by fluorometric methods in
 healthy volunteer ... 325
 Exp. 22. To evaluate acetylator status by isoniazid (INH) estimation in
 healthy volunteers .. 328
 Exp. 23. To evaluate anticholinergic effect of oxybutynin (30 mg tablet) on salivary secretion
 in healthy volunteers ... 330
 Exp. 24. To demonstrate histamine induced wheal and flare in healthy volunteers 331
33. Laboratory Experiments (Assay) ... 333
 Exp. 25. Therapeutic drug monitoring in pharmacology
 (antiepileptic/lithium/digoxin) ... 333
34. Impact Factor ... 336
35. Computational Pharmacology .. 338
36. Pharmacokinetics/Pharmacodynamics ... 340
37. Promotional Product Literature ... 342
38. Analytical Toxicology .. 346
Practical Manual of Experimental and Clinical Pharmacology

39. Recent Advances in Pharmacology ... 350
 A. Translational medicine ... 350
 B. Reverse pharmacology .. 350
 C. Microdosing (Phase 0) ... 351

Appendices
 I. Abbreviations ... 353
 II Drug and solubility .. 355
 III. List of drugs in clinical pharmacology practicals 357
 IV. Equipment required in clinical pharmacology laboratory 363
 V. Analytical and molecular mass ... 364
 VI. Log conversion table ... 365
 VII. SI unit conversion ... 368
 VIII. Practical examination question paper .. 369

Index .. 371